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Abstrakt / Abstract

Tato bakalářská práce se zabývá pro-
blematikou detekce chyb při robotické
montáži za pomoci metod používaných
pro detekci anomálií. Tyto metody po-
užívají data ve formě časových řad zís-
kaných ze senzorů na chapadlu robota.
Celkem byly navrženy tři architektury
metod, které mouhou být použity v
různých konfiguracích podle aplikace.
Metody byly testovány na úloze detekce
chyb v robotickém procesu, ale zároveň
byl kladen důraz na obecnost, aby je
bylo možné použít in na jiné úlohy z
oblasti detekce anomálií v časových
řadách.

Navržené metody jsou schopny zpra-
covávat signály v celé délce (po dokon-
čení zkoumaného procesu) i v průběhu
daného procesu, proto je možno me-
tody používat i pro predikci v reálném
čase. Navržené metody byly důkladně
porovnány podle standardizovaného
systému testování. Prioritou při návrhu
tohoto systému bylo co nejspravedli-
vější zhodnocení navržených metod.
Tohoto cíle bylo dosaženo důkladným
testováním metod pomocí několika typů
křížové validace. Zajímavým přínosem
této práce je porovnání statistických
metod a metody založené na hlubokém
učení. Metody byly přidány do PyPI
databáze v rámci knihovny ctuFault-
Detector, kterou je možno nainstalovat
pomocí příkazu pip. Největší výhodou
implementovaných metod je možnost
optimalizovat metodu pro kritérium
(pravděpodobnost detekce, pravděpo-
dobnost falešného poplachu, přesnost,
vážená přesnost), které může být pro
každou aplikaci různé.

Klíčová slova: Detekce anomálií, Kla-
sifikátor, Statistické metody, Hluboké
učení, Detekce chyb

Překlad titulu: Detekce anomálií při
robotické montáži založená na signálech
z čidel síly a momentu síly

This thesis discusses the problem
of fault detection in industrial robotic
assembly process utilising the methods
used for anomaly detection. These
methods rely on data in the form of
time series collected from the sensors
located on the end effector of a robot.
In total, three different method archi-
tectures were designed, which can be
used in multiple configurations based
on the application.

The proposed methods were not only
designed to work on the case study of
this thesis, but rather to be universally
applicable to any time series anomaly
detection task. The proposed methods
are able to process both the signals
in their whole length and the partial
signals and therefore are able to make
prediction during the run of the process
in real time. All the methods were
compared to one another in a standard-
ized testing system. Our main priority
when designing this testing system was
to create an as fair assessment of the
method performance as possible. This
was achieved through testing the meth-
ods thoroughly through multiple types
of crossvalidation. An interesting part
of this testing process was the compar-
ison of the classical statistical anomaly
detection methods, and the deep learn-
ing method. The methods were added
to PyPI database as ctuFaultDetector
library which can be installed using a
pip command. The biggest advantage of
our implementation is that the methods
can be optimised for a desired criterion
(true positive rate, true negative rate,
accuracy and a new proposed metric
called skewed accuracy), which can be
different for each use case.

Keywords: Anomaly detection, Clas-
sifier, Statistical methods, Deep learn-
ing, Fault detection
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Chapter 1
Introduction

Quality control is very important task in assembly process theory and its automation
is crucial part of making the industrial processes more efficient. The tedious task done
by human operators can be substituted by independent, automatic methods. The aim
of this thesis is to develop a reliable method for detecting anomalies in an assembly
process based on time series data from the sensors on the end effector of a Delta robot
in the Testbed for industry 4.0 laboratory at the Czech institute of informatics,
robotics and cybernetics (CIIRC) under Czech Technical University in Prague (CTU).
After researching the techniques, three method architectures were developed to execute
this task. Additionally, the methods operating on data streams were built on two of
these architectures.

The two of the developed methods could be categorized as classical statistical meth-
ods and one method is based on deep learning. The comparison between these two
approaches is very interesting since in recent years there is a strong surge in usage of
deep learning methods, including usage on tasks which classical methods may solve
better.

The primary motivation of developing these methods was the specific application
in CIIRC Testbed lab, however they were designed to be applicable to similar time
series anomaly detection and classification tasks. These methods were implemented
in python and the library is available through installing the PyPI ctuFaultDetector
package using pip command. The main benefit of this package is that the methods are
not available only as a raw form to evaluate them or to use them in our application,
but are implemented in an intuitive way to be easily built-on and integrated into other
projects.

It is also important to mention that even though the name of the thesis suggest, that
the primary motive is to detect anomalies within the signals, The main objective is to
detect faults in the process, on which we use the anomaly detection techniques. There
is therefore an assumption that the fault in the outcome of the process is caused by an
anomaly within the signal.

1.1 Related work
Detection of anomalies in any type of data is an often solved problem. In the continuous
processes time series data is often used. In recent years the research has shifted from
classical methods to the methods based on deep learning. In this section, experiments
which resemble our work will be discussed. No papers addressing the exact same prob-
lem were found in the review of related literature, but the ones below share either the
general topic of anomaly detection in time series, the topic of assembly process fault
detection or the architecture of methods used in these, is similar to the methods used
in our case.

In 2021, researchers from the university of Trnava published an article ([2]) about
detecting the anomalies in the operation of steel bearings in conveyor belt which is a

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
part of an assembly line, which made the assembly process halt. The team used neural
networks to avoid manually tuning the data. Their research came to a conclusion that
a great amount of data is needed for this approach to work.

In 2019, researchers from the university of Padova proposed a detector of abnormal
time series in refrigerant insertion into refrigerant cabinet during refrigerator assem-
bly process ([3]). They used a CNN-MLP Bayesian neural network architecture and
achieved an 𝑓1 score of 0.743.

In 2021, a team from the polytechnic university in Tomsk [4] developed a simple algo-
rithm for detecting faults of an industrial manipulator. The method is based on mean,
minimal and maximal normal actuator currents. The downside of their approach is that
only abnormal processes, which signals which breach these thresholds are detectable.

In 2024, a German team created a dataset for detecting failures in object handover
between a human and a robot [5]. They also published two methods which they tested
on the dataset. This dataset consists of annotated video, force-torque and joint states
for successful and failed robot to human and human to robot handovers. They used
neural networks and found out that the annotated video is essential for classification,
but force-torque sensor is very beneficial. They reached maximum accuracy of 71%.

In [6] two unsupervised approaches were developed - a one class support vector ma-
chine and an autoencoder to detect collisions of collaborative robots. The results pre-
sented by this paper were exceptional, but the nature of the task upon which is the
anomaly detection computed is quite different. In another article pursuing the collisions
of collaborative robots the researchers used force and torque sensor placed in the robot’s
bed plate and used predetermined threshold combined with moving average filter for
avoiding noise to detect collisions [7].

Biegel et al. used multiple methods including principal component analysis, dense
autoencoder and autoencoder neural network based on LSTM to detect faults in sheet
metal forming process for automotive industry [8]. They published outstanding results
on all of the methods they examined, however the nature of the dataset used in this
article was simpler than the one used in this thesis. Particularly interesting is that they
managed to train the autoencoder neural networks to very high accuracy even with a
relatively small training dataset.

In [9] (survey paper) many other state-of-the-art methods for detecting faults in
industrial processes are listed. They focus mainly on the applications of deep learning
methods in the industrial fault detection, but also review the traditional approaches.
Another survey paper [10] shows the different types of approaches to the data-stream-
driven (online) anomaly detection. Multiple approaches to online learning are discussed.

In 2023, a Slovakian team published an article of using a similarity metric used for
time series called the dynamic time warping [11] for anomaly detection in the method
they developed. They tested their model on three different datasets. They aimed
their efforts at making the model learn from predictions with human assisted continual
learning and using human in the loop paradigm.

1.2 Motivation
There are several ways of approaching a problem of quality control in assembly process.
Among the ones used commonly in industry is visual approach (a camera that monitors
the process). One of the main disadvantages is that camera can see the process only
from one scene. If it is necessary to control the process from more angles, either
more cameras need to be used or the product or the camera must be moving which

2
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is expensive and complicated. There are also many industrial processes, in which the
usage of camera is not possible because of poor visibility or other reasons.

In this section 1.2.1 we will discuss briefly the two approaches to solving the problem.
The more in-depth description, with respect to the dataset provided in the appendix,
is written in section 2.1. In the following sections 1.2.2-1.2.5 a description of certain
machine learning concepts and motivation for their use in this thesis is described.

1.2.1 The problem solved in the thesis
The purpose of this thesis is to design a method for identifying poorly assembled wheels
from the force and torque sensors located on the end effector of a delta assembly robot.
The method used before developing the methods from this thesis worked by analyzing
the photographed assembled wheels after the assembly process was completed. The
primary drawback of this approach is, that the camera solely captures the wheels from
an overhead perspective. This leaves a room for a lot of undetectable anomalies.

Recognizable Recognizable
Anomaly type from from

Camera Force-Torque

Failure to pick up tire ✓ ✓
Tire does not seal the rim at the top ✓ ✓

The tire is defected (visible) ✓ ✓
The tire is defected (not visible) ⨯ ✓

Tire does not seal the rim at the bottom ⨯ ✓
The rim is defected (not visible) ⨯ ✓
The rim is defected (visible) ✓ ✓

Tire is too elastic ⨯ ✓
Tire is too stiff ⨯ ✓

Wrong sized tire/rim (≥≈ 5%) ✓ ✓
Wrong size of tire/rim (≤≈ 5%) ✓ ⨯

Table 1.1. Types of anomalies and their detectability by the different approaches to solu-
tions.

The most common types of anomalies are listed in table 1.1 along with the de-
tectability by each method. All of these anomalies were encountered when collecting
data for training. Some anomalies were artificially evoked, when creating the dataset.
The manufacturing of artificial anomalies is discussed in chapter 2.3.4.

1.2.2 Data-stream-driven anomaly detection
Many time series processes can benefit from real time interaction. In the case of
anomaly detection in an assembly process, real time interaction can be beneficial, for
example in aborting process to prevent collision and thus destroying expensive tools
or materials. Another benefit could be making the assembly process more efficient,
because when encountered defected parts, the robot will not perform the whole process
of assembly, but will rather abort the process, in real time, just when anomaly is
defected. In the application described in this thesis, the amount of saved time may not
be as significant, because the process is rather short and anomalies are by definition

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
uncommon, but in other cases, when the monitored process is longer the time saving
benefits could be significant. The biggest advantage of data-stream-driven anomaly
detection in our case is protection of valuable end effector of the robot. The fingers
of the gripping tool end effector of the delta robot are 3D printed from expensive
material and when collision happens, there is a risk of breaking them. Preventing
collision is a big enough motivation to try analyzing the signals from data stream.
Throughout this thesis, the methods with capability to operate in real time on data
streams are named online methods.

1.2.3 Edge AI

Edge AI can be described as implementing AI models on local “Edge” devices. These
can be sensors, processors, IoT devices, computers or any other devices that are directly
next to the monitored process, whence the input data comes from [12]. Among the
positives of this approach is real time online data processing or independence from
cloud infrastructure. On the other hand, the local devices which host the AI models
do not possess the computing power and memory storage of cloud systems. When
designing a method for an edge device, it is important to know the parameters of the
device so method of appropriate time and memory complexity can be implemented.

For the purpose of deploying the model on the edge device the code was encapsuled
as a Docker container. Because of the fact that, the specific edge device for application
is still not known, this approach was used. The dockerization and deployment methods
were developed by Vojtěch Hanzlík [1].

1.2.4 Continual learning

In literature, continual methods are defined as methods capable of updating the
parameters of the model after the model has been put to production (not only from
the training process) [13]. The methods proposed in this thesis can really benefit from
such an approach, since parameters of the data can shift over time due to different
calibration of the robot, the environment in which the process takes place and other
factors. Continual learning is implemented using passive or active learning. In passive
learning, the model updates its parameters solely from the incoming data, whereas
in active learning the model can be updated from the human intervention. As an
example of using human intervention in classifiers, stating ground truth of a sample
predicted with high uncertainty can be utilised. All methods proposed in this thesis are
designed to not be dependent on human interactions, but in some of the methods, ac-
tive learning via human in the loop (HITL) paradigm pictured in figure 1.1 can be used.

1.2.5 Supervised vs unsupervised learning

Machine learning algorithms can be divided into two types based on the training pro-
cess and the nature of the dataset. These are supervised and unsupervised learning
algorithms. In literature the definition of these terms is often vague, so it is important
to define both of those for our usage.

The supervised learning algorithms rely on labeled training dataset. On the other
hand the unsupervised learning algorithms use only raw data without labels during the
training process. Instead of learning from labelled examples unsupervised algorithms
find hidden patterns within the data and make their predictions based on them.

4
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Figure 1.1. Schema of human in the loop (HITL) data processing pipeline paradigm
adapted from [14]

The supervised methods in this thesis use the dataset labeled with ground truth
labels. Even though the anomaly detectors used in this thesis (with an exception to
the method described in section 4.1) are one class classifiers, and therefore could be
named unsupervised, we use the labels to train these one class classifiers only on the
non-anomalous signals. The anomaly score (outcome of the one class classifier) of
anomalous signals is then used to set the threshold of anomality. Therefore, we use a
ground truth information about anomalies, and call these methods supervised.

On the other hand, the unsupervised learning algorithms we used, are the usual
one class classifiers trained without the use of labels. The threshold of anomality is
set based on the estimation of the ratio of non-anomalous samples within the dataset
(success ratio). The unsupervised methods are trained on all the data, and the part
of the most deviating data from the model parameters (set as 1 − 𝑆𝑅, where SR is the
success ratio) is predicted as anomalous. After this, the classifiers are retrained on the
data which remained in the training dataset and the threshold of anomality is tuned
based on these predicted labels.

Supervised models generally outperform unsupervised ones, which was also demon-
strated by this thesis, however unsupervised models offer the significant advantage of
not requiring labeled dataset, which in some cases may be challenging and expensive
to obtain.
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Chapter 2
Dataset

The goal of this thesis is to design a fault detection system for an assembly process in
the CIIRC Testbed for Industry 4.0 laboratory. Therefore, the models developed are
trained and tested on data acquired from this facility. Even though solving the problem
of anomaly detection for this very specific process is the main motivation for developing
the presented models, the origin and nature of the data is not really important. The
methods are designed to be applicable to any time series data.

In this chapter the origin of the dataset used for training and testing the methods is
described.

2.1 Process

The kinematics used for the robot used in the case study of this thesis is called the
delta robot. This type of architecture is used when high speed and precision is needed,
but comes at the cost of reduced operating space or higher cost of the architecture [15].
The delta robot can be seen in the figure 2.1.

Figure 2.1. Delta robot in CIIRC Testbed for Industry 4.0 lab adopted from [15].

The delta robot performs an assembly process of a wheel, which is a task in a pro-
duction line at CIIRC Testbed lab with the goal to manufacture a model of a car. A
wheel consists of the rim and the tire. One process involves assembling four wheels on
a pallet, which can be divided into these four stages:
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1. The position of rims and tires placed inside a rectangle bounded by Aruco labels is
identified

2. The “suction tool” is used for picking up the rims and move them onto the pallet for
assembly

3. The “tire gripping tool” is used for picking up tires and put them on the rims
4. This pallet of four assembled wheels continues to next station of the assembly line

The assembly process fails during parts one, two and four of described process in less
than 1% according to the engineers at CTU Testbed, which is acceptable. However,
the fail rate during the process of putting the tires on the rims is higher and this
process needs a control mechanism for fail checking. The example of correctly and
poorly assembled wheel can be seen in figure 2.2.

Figure 2.2. Comparison of poorly (left) and correctly (right) assembled wheel. The left
tire is not tightly attached onto the rim. This is highlighted in the red rectangle.

2.2 The nature of the data

The end effector of the delta robot is equipped with SCHUNK Mini58 force/torque
sensor ([15], [16]), which can measure these quantities in all three dimensions. The
output of the sensor is constantly streamed through Profinet and can be read via OPCua
protocol [1].

All the signals within any dataset used for training our methods need to be multivari-
ate time series with the same dimensionality. The dataset for our case study contains
six-dimensional signals, where dimensions are the three forces and three torques in the
directions of the x, y and z axes. For the methods to work it is necessary that the
columns within the matrix for each dimension are fixed1.

As has been mentioned in one process run, four wheels are assembled on the pallet.
We need to process the data and pick out the four individual processes of equipping the
rim with a tire. To identify this an identifier variable is also read when measuring
the data. When the process of putting the tire onto a rim starts, this variable changes
from zero to the value of the process id. In the context of the rest of the thesis, the

1 In terms of implementation, all the methods are designed to take a list of tuples (𝑛 × 6 numpy ar-
ray/pandas DataFrame, label), for the supervised methods and (𝑛 × 6 numpy array/pandas DataFrame,
anything (usually None)) for the unsupervised. Both the offline and online predicting methods expect an
𝑛 × 6 numpy array with data from each dimension of the signal being in one fixed column of the matrix.
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Figure 2.3. Sample process signal of putting the tire onto the rim

terms signal, or time series refer to the signal read during an individual process of
putting tire onto a rim. Therefore, four signals are measured during each pallet cycle.

The example of data acquired from monitoring a process of equipping the tire onto a
rim can be seen on picture 2.3. The distribution of the normal and anomalous processes
within one measuring day for a particular dimension can be seen in the histogram in the
figure 2.4. To create this figure, the value of each signal was sampled in time and the
values of the signal were quantized. The value of each point (the z axis in the figure) is
the number of samples which fall into each quantized block. The red values are a result
of anomalous signals, the blue of the non-anomalous signals.

The data from the sensor is read in constant intervals, so the timestamps do not
need to be saved with the data itself, and if they are necessary, they can be recomputed
from the sampling period and the index of the sample.

2.3 Data acquisition and preparation
At the start of this thesis we were given one hundred samples of the process by the
CIIRC Testbed team, however for the successful development more samples were
needed. Thus, several measurements of data were performed. In the end, 524 samples
of the process were collected, although not all of them are labeled properly. The
number of samples with in-depth labeling containing the type of anomaly is 292. The
number of correctly binary-labeled (true/false) processes is 392. All signals from this
dataset are plotted in figure 2.5. From the first glance, it can be seen that the dataset
consists of a lot of fault types, which exhibit varying degrees of anomaly. The results
of the measurement process are visualized in figure 2.6. The ways of labeling used for
data in each day are listed in the table 2.1.
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Figure 2.4. Histogram of values of force in the z axis for correctly executed and fault pro-
cesses. The blue histogram comes from the correctly executed processes, the red histogram
comes from the fault processes. The data in this histogram comes from 14.03.2024 mea-
suring day, since the number of successful and anomalous processes is the same in this

measuring day.

2.3.1 Data measurement
To measure and acquire data a script that communicate with robot was created. This
interface was created by Vojtěch Hanzlík in [1]. The script interacts with OPCua
protocol and reads and stores data from the robot in the form of numpy array.

The dataset we used for experiments consists of data from four measuring days. In
the dataset a problem of worsening the quality of tires was encountered. The tires used
in the assembly process are designed to be put on the rims only once, however at the
time of creating the dataset, only a few prototype tires were available. Thus, the tires
had been reused a great number of times, which has negatively impacted their quality.
During some measuring days, the quality of tires was not monitored properly, even
though the labeling of data from these sessions exists, for the purpose of preventing
false labeling, this data was used (and is available) only as unlabeled.

2.3.2 Labeling the dataset
When using supervised methods, the data must be labeled in order to train the model.
Several labeling methods were used for the measured data. The first basic technique,
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Figure 2.5. A visualization of all the processes from the dataset used for evaluating the
methods (392 signals). Blue color represents a correctly executed process and red color

represents anomalous process

which is available for all measurements was that the labeling was performed by a convo-
lutional neural network (CNN) developed by Artem Moroz at CIIRC Testbed lab. After
the assembly process ends, the result in assembled wheels on a pallet is photographed
from an overhead perspective. The photo is then downsampled and used as an input
to this CNN. The network returns a True/False label.
As was mentioned in chapter 1.2, the main drawback of this labeling method is that
many types of anomalies are undetectable by this method, for example the one in figure
2.7. That is why for some measurements human labeling was used. The labeling done
by human is not binary, but rather classifies the process either as successful or as:

. Failure to pick up tire. Defected tire. Defected rim. Tire does not seal the top of the rim. Tire does not seal the bottom of the rim. Tire does not seal the top and bottom of the rim. Other

This extended labeling was done in order to train models to diagnose specific anomaly
type. Even though such models were not developed in this thesis, in the future we plan
to experiment with this concept. The labels were available only for offline methods.
The labeling for evaluating the online methods is only semi-supervised and is described
in section 5.2.1.

The results and the distribution of the labeling for each measuring day can be seen
in the figure 2.6. Additional info for each measurement day can be seen in the table
2.1.
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Original signals

29. 02. 2024

07. 03. 2024

11. 03. 2024

14. 03. 2024

0 25 50 75 100 125 150 175 200
Index of the measurement

18. 04. 2024

Figure 2.6. Schema of the dataset measurement process. Each subchart represents a day
of measurement and each little block represents a sample. Blue color represents a correctly

executed process and red color represents anomalous process

a) b)

Figure 2.7. Example of an insufficient assembly of a wheel, which is undetectable by the
camera-based method. In the subfigure a), the wheels look assembled correctly, but the
side view in subfigure b) shows that one wheel is assembled correctly and the other poorly.

The fault is highlighted in the red rectangle.

2.3.3 The invalidity of the part of the dataset

During the measuring process, it was found that the data from two measuring days are
unusable. These two days are the 07.03.2024 and 11.03.2024 (highlighted by the red
rectangle in the figure 2.6). During these two days the measurement was conducted
with a fault and the ground truth labels do not match the reality. During these days
the measurements were conducted with tires that were already really worn, some of
them almost in the state of the tire in figure 2.8 b). Those measurements were not
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Measuring CNN Human Extended Artificial Used in
day labels labels human labels anomalies experiments

Original ✓ ⨯ ⨯ ✓ ✓
29.02.2024 ✓ ⨯ ⨯ ⨯ ✓
07.03.2024 ✓ ⨯ ⨯ ⨯ ⨯
11.03.2024 ✓ Wrong ⨯ ✓ ⨯
14.03.2024 ✓ ✓ ✓ ✓ ✓
18.04.2024 ✓ ✓ ✓ ⨯ ✓

Table 2.1. Detailed information about each measuring day. The Wrong refers to the fault
in measuring on this day, caused by a defected tires when measuring which was not prop-
erly labeled. Artificial anomalies refers to the artificially manufactured anomalies

explained in the section 2.3.4.

properly labeled, but we kept the original labels, since at the time we thought that
these are the last tires available to us. A few days later another set of tires was given
to us, and we could do more proper measurements. Because of this, the measurements
from these two days were discarded from the training dataset. They can still be found
in the dataset provided in the appendix.

a) b)

Figure 2.8. Example of a normal and a defected tire. An undamaged tire should look like
the one in the subfigure a). The rubber of the tire in the subfigure b) is torn on the inside

of the tire which can be seen in the red rectangle.

2.3.4 Physical augmentation of the measurement
One of the greatest problems in anomaly detection is to have enough anomalous training
data. That is why several measurement augmentation techniques were used. Among
those was the usage of poorly manufactured rims or tires (rims of different sizes/shapes
or with defects and tires from poor quality rubber). These techniques were applied
because problems like these can be encountered in the real process. The deliberate gen-
eration of anomalous data to ensure a good representation of them within the training
dataset is a common practice in the industry.

It is important to bear in mind, that artificially created anomalies can cause problems
when the model is put to production. The most obvious problem a model can face is that
the artificial anomalies do not accurately simulate the naturally occurring anomalies.
Another instance of this can be overfitting the model for a specific type of anomaly.
The examples of the augmentation can be seen in figures 2.8-2.10.
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Figure 2.9. Tires of different stiffness used as anomalous data. The left tire is 3D printed
and is very stiff, the tire in the middle is a different type of a tire and is a bit stiffer than
the normal tire and the tire in the right is less stiff than the normal tire. The tire with

normal stiffness can be seen in figure 2.8, subfigure a).

Figure 2.10. Examples of different defects on the rims used as anomalous data. The rims
in the red rectangle are defected, the rim in the green rectangle is an example of a correctly

manufactured rim.
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Chapter 3
Statistical methods

In this chapter the statistical methods for solving the problem are discussed. We propose
two architectures of methods, which serve as a basic logic block, upon which tailored
methods for a specific use case can be built. Each of these architectures has its own
solution for both supervised and unsupervised learning, is capable of continual learning,
and can operate on the data stream and make predictions in real time of the process.
For both architectures of methods, the principle, training and approach to all variants
built upon the idea of given architecture is presented. The biggest advantage of our
statistical methods in comparison to deep learning methods and other approaches is
the ability to easily train the model in a specific way. This means that our methods are
capable of being trained to the specific minimal value of the true positive rate (TPR),
true negative rate (TNR) or to maximise accuracy (ACC). All of these metrics are
explained in the section 5.1. In addition to these we introduce our custom metric called
skewed accuracy (sACC), which serves a similar purpose as the f-score and based on
the input parameter defines the ratio of importance of correct classification of positive
and negative samples. The way of computing the skewed accuracy is in the equation
(1).

𝑠𝐴𝐶𝐶 =
𝜃 ⋅ 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 + 𝑇 𝑁
𝑇 𝑁+𝐹𝑃

𝜃 + 1
(1)

where 𝜃 ∈ [0, ∞] is the importance ratio between the positively and negatively classified
samples. 𝑇 𝑃 is the number of true positives, 𝑇 𝑁 is the number of true negatives and
𝐹𝑃 is the number of false positives and 𝐹𝑁 is the number of false negatives.

Throughout our work, a term smart skewed accuracy is used. This refers to the
skewed accuracy, where 𝜃 is set as:

𝜃 = 𝑁
𝑃

(2)

where 𝑁 is the number of negative samples in the training dataset, and 𝑃 is the number
of positive samples in the training dataset.

It is possible to train the deep learning based models so that they satisfy these
criteria, for example through oversampling the dataset or using loss functions with
different weights for different classes, but the training process is not as straightforward
and the result is uncertain. In general, this chapter focuses on explaining the principle
of the developed methods rather than the implementation, which is explained in the
Jupyter notebook provided with the code in the appendix of this thesis.

3.1 Error aggregation from n-𝜎
The error aggregation from n-𝜎 method (shortened to n-𝜎 or deviation classifier) is
based on the common statistical anomaly detection method of counting the deviation
from mean. Specifically, the method is based on three sigma control limits described in
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[17]. The principle is to count the number of timestamps, in which the studied signal
deviates from the precomputed mean (𝜇) over the signals from by more than 𝑛𝜎, where
𝑛 is preset multiplier and 𝜎 is the standard deviation of the given timestamp. This
classifier assumes that the signals from anomalous processes have greater number of
timestamps, which deviates from the mean than the signals from successfully executed
processes.

3.1.1 Training the classifier

Supervised approach
An euclidean mean and standard deviation of time series dataset is computed for all
signal dimensions in each time stamp from the non-anomalous samples. The mean
signal matrix (shaped 𝑡 × 𝑑, where 𝑑 is the dimensionality of the signal and 𝑡 is the
maximum length of a signal within the training dataset), and the variance signal matrix
with the same shape are used as model parameters. The time series within the training
dataset may be different lengths so the mean and variance for the specific timestamp is
always computed only from the signals which contain it. The classifier should be trained
on complete signals to avoid variability in the update rates across different timestamps
that can occur with continual learning.

From the computed mean and variance a non-anomalous zone is defined. This non-
anomalous zone is defined as the region within the 𝑛-th multiple of standard deviation
from the mean signal. Visual representation of this can be seen as the blue zone in
figures 3.1 and 3.2. The 𝑛 is a parameter of the classifier which is determined before
the training process. In this thesis we solely use 𝑛 = 3, because it is commonly used in
the statistical process control literature [17].

All the signals from training set (including the anomalous samples) are compared
with the model parameters and the number of timestamps where the signals exceed the
𝜇 ± 𝑛𝜎 threshold. These values are saved for normal and fault processes.

As mentioned, before starting the training process it is possible to select a criterion
for which the detector is optimised on the training set. In the next step this is where this
functionality is used. The detector finds such value called anomaly threshold which
satisfies the required criterion. For example if we trained the detector with required
minimal TPR of 0.8, a value smaller than 80% of number of anomalous timestamps of
signals from fault processes, which as a second criterion achieves the best accuracy is
selected. This anomaly threshold is the third and final model parameter. Given the
criterion is minimal TNR of 80%, the same procedure is followed in the opposite direc-
tion - a number greater than 80% of number of anomalous timestamps of signals from
successfully executed processes with best possible training accuracy is selected. The
maximum accuracy criterion finds a value for anomaly threshold for which the accu-
racy metric reaches its maximum, and for skewed accuracy, the argument of maximum
of skewed accuracy function is found.

Unsupervised approach
If the labels are not available, the unsupervised approach is applied. The mean is
computed from all samples. Then, a percentage estimate of samples with greatest
euclidean distance from the computed mean is removed and labeled as anomalies. In
the literature this is usually called fault ratio, in our methods we use the opposite
term success ratio, which is described as the number of successful processes within the
training dataset and can be computed as 1 − 𝐹𝑅, where 𝐹𝑅 is the fault ratio.
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The success ratio can be estimated based on prior knowledge of the frequency of

anomalies in the process, or it can be set to a predefined value. In the case of imple-
mentation used in this thesis the value is approximately 10%. A word approximately is
used because the real removal is done in two steps of removing the five percent of the
samples with the greatest distance from mean. From experience this performs better,
than removal of samples in one step.

After the removal of these assumed anomalies, the mean and standard deviation are
computed, and these values serve as the model parameters. The rest of the training is
the same as the supervised approach.

3.1.2 Prediction mechanism

The prediction mechanism of this method is pretty straightforward. A number of
timestamps the studied signal exceeds the range of 𝜇 ± 𝑛𝜎 is computed and if the
number is greater than the anomaly threshold, the signal is predicted as anomalous.
If the signal is smaller or equal to the anomaly threshold, the signal is predicted as
non-anomalous. In figures 3.1 and 3.2 a visual representation of classification using 3-𝜎
method can be seen. The light red background signifies a breach of standard deviation
from the mean signal by more than three times in any dimension at that timestamp.
The dark red background signifies such breach in current dimensions. The tested signal
is displayed in black, while the bounds and the normal range of the signal is in blue.
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Figure 3.1. Successfully executed process signal (failure to pick up tire) classified by 3-𝜎
method. The normal signal range is the blue area in each dimension, the signal being
predicted is the black line, light red area indicates an anomaly in the timestamp in any

dimension and dark red indicates an anomaly in the timestamp and the dimension.
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Figure 3.2. A signal coming from a fault process (failure to pick up tire) classified by 3-𝜎
method. The normal signal range is the blue area in each dimension, the signal being
predicted is the black line, light red area indicates an anomaly in the timestamp in any

dimension and dark red indicates an anomaly in the timestamp and the dimension.

3.1.3 Continual learning
Continual learning is utilised by online update of the mean and variance prototype
signals, which saves allocated memory and time. Instead of keeping all the samples
in memory and computing mean and variance signals each time new sample comes to
classifier, which would be very demanding on the memory and that is not desirable
especially when implementing the detector for the edge device, the new mean signal is
computed via incremental mean update:

𝜇𝑖 = 𝜇𝑖−1 + 𝑥𝑖 − 𝜇𝑖−1
𝑠

(3),

where 𝜇𝑖 is the new mean signal, 𝜇𝑖−1 is the previous mean signal, 𝑥𝑛 is the new
sample signal to be predicted and 𝑠 is the number of samples. The standard deviation
(variance) signal is computed via incremental variance update:

𝜎𝑖 = √𝑠𝜎2
𝑖−1 + (𝑥𝑖 − 𝜇𝑖−1)(𝑥𝑖 − 𝜇𝑖)

𝑠
(4),

where 𝜎𝑖 is the new standard deviation signal, 𝜎𝑖−1 is the previous standard deviation
signal, 𝜇𝑖 is the new mean signal, 𝜇𝑖−1 is the previous mean signal, 𝑥𝑖 is the new sample
signal being predicted and 𝑠 is the number of samples. The indexing in both of these
methods refers to old and new signals, not elements within the signal.

These two incremental updates are always computed together during the same
process, so the dataset mean values used in the equation for incremental variance
update are directly pasted after computing them via incremental mean update. The
equations (3) and (4) were adapted from [18].
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3.1.4 Application on data stream

We introduced two ways of making the method work on partial signals. For the first,
naive way no additional training is required (the offline training for evaluating the whole
signals is sufficient), and the sample is simply evaluated to the part of the prototype
(mean) of the same length, the number of anomalies is counted, and this number is
multiplied by the ratio of length of the whole mean signal to the length of the evaluated
prototype. Since there are no labels for when the anomalies happen in signals, the
positive and negative predictions are measured differently. The way of evaluation is
explained in section 5.2.1. Because of this, it may be beneficial to train the online
detector with a different requirement than for the one operating solely on the whole
signals, which is why it was implemented. To satisfy the online criterion a model
parameter which multiplies the number of anomalies for partial signals can be trained.
The principle of tuning this parameter to a desired TPR, TNR, accuracy or skewed
accuracy for online approach (which can operate on data streams) is the same as with
tuning these criteria in the offline approach (which operates solely on the whole signals).

3.2 Distance based feature classifier
The distance-based feature classifier (shortened to feature classifier, feature method)
leverages time-series clustering methods, which are often computationally and mem-
ory intensive, to encode high-dimensional signals into low-dimensional feature vectors,
which enables fast prediction. The feature vectors are easy to operate with, and a con-
ventional classifier can be used for the anomaly detection. The implemented solution
can work both as supervised or unsupervised and may be fully independent, but can
also utilise Human in the loop (HITL). In essence, the nature of the features is not
important. In literature some computed signal parameters are often used for similar
methods, But for the sake of this thesis the features are distances to precomputed
prototypes. A time series prototype is a term often used in time series clustering
applications describing an average signal computed from a time series dataset. Note
that average in this context does not describe mean signal (although mean signal can
also be a prototype), but rather a representative sample for a set of time series. In
this thesis the DBA barycenter [19] and euclidean barycenter (mean signal) are used
as signal prototypes. The computation of the DBA is very computationally expensive,
however the prediction is very fast.

We assume, that the distances to the specific barycenter are normally distributed
among the successfully executed signals. The parameters of the normal distributions
of the features are estimated, and signals are classified based on the Mahalanobis dis-
tance to this distribution. For solving the second part of this method (feature vector
classification) a Gaussian classifier was used in the implementation, but other types of
classifiers also work. For example support vector machine, k-nearest neighbors, artificial
neural network and others.

3.2.1 Feature extraction
Dynamic time warping
Dynamic time warping (DTW) is an algorithm that has been introduced by [20–21].
The implementation used in this thesis is described in [19].
DTW is used to get an accurate measure of similarity between two time series. Unlike
norms, which cannot measure the distance between time series of different lengths
without tricks such as padding, DTW is capable of it.
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Euclidean distance Dynamic Time Warping

Figure 3.3. Comparison between aligning the indices for measuring the distance by eu-
clidean distance and DTW. To generate this figure a code from [22] was used.

The principle of the algorithms is described in the following paragraph. Given two
time series 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑚}, 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑛}, each point from time series 𝐴 is
paired with a point from time series 𝐵 and vice versa. The pairing must respect the
following properties:

. The first element from the time series 𝐴 is paired with the first element from the
time series 𝐵. The last element from the time series 𝐴 is paired with the last element from the time
series 𝐵. The indices of paired points (𝑖𝑘, 𝑗𝑘) from both time series are not decreasing:

1 ≤ 𝑖𝑘 ≤ 𝑚, 1 ≤ 𝑗𝑘 ≤ 𝑛
𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑖𝑘+1

𝑗𝑘−1 ≤ 𝑗𝑘 ≤ 𝑗𝑘+1

The cost of the optimal alignment can be recursively computed by

𝐷(𝐴𝑖,𝐵𝑗) = 𝑑(𝑎𝑖, 𝑏𝑗) + min{𝐷(𝐴𝑖−1, 𝐵𝑗−1), 𝐷(𝐴𝑖, 𝐵𝑗−1), 𝐷(𝐴𝑖−1, 𝐵𝑗)}

with exponential complexity. Thanks to dynamic programming we can turn the problem
to 𝑂(𝑛 ⋅ 𝑚) [19]. The result of such pairing can be seen in figure 3.3.

The time series used in this thesis are not univariate. Because the time is the same
for all dimensions of the time series, dependent DTW (DDTW) [23] needs to be used,
which minimises the distance for all dimensions in the same time sample.

Dynamic time warping barycenter averaging
Dynamic time warping barycenter averaging (DBA) is an algorithm that was published
in [19]. It solves the problem of creating a representative prototype from a time series
dataset. This can be useful in applications like clustering based time series tasks or
time series classification tasks. In this thesis we use it to create a prototype for one
component of a feature vector.

3.2.2 Training the classifier

Supervised approach
In the supervised approach labeled dataset is required to train the model. In general
the training algorithm is described as follows:
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and saved as feature vectors. These can for our case be seen in figure 3.4.. A mean value of feature vector of the non-anomalous samples is found. Mean and variance is computed for each metric (feature vector component) among
the non-anomalous samples. A multivariate Gaussian distribution (𝐺(𝜈, Σ)), where 𝜈 is the mean feature vector
and Σ is the covariance matrix between the components of the feature vectors is
constructed.. An ideal confidence interval for the classifier is computed based on the given criterion.
The criteria (TPR, TNR, accuracy, skewed accuracy) are described in the beginning
of the chapter 3.

The ideal confidence interval of the distribution which approximates the feature vectors
of successfully executed processes is tuned in a way that it optimises the criterion.
As of this day, there are four criteria for which the classifier can be optimised. These
are true positive rate, true negative rate, accuracy and skewed accuracy. To set the
confidence interval a quantile which best satisfies the condition of 𝜒2 distribution with
the degrees of freedom equal to the dimensionality of the feature vector is examined
for evaluation. The Mahalanobis distance to the multivariate Gaussian distribution
model parameter is computed for all the samples in the training set and is compared
to the 𝜒2 quantile value. As with the n-𝜎 method, if we want to train the classifier
with minimum TPR rate of 0.8, a 𝜒2 quantile which satisfies this condition is found.
If there is no such quantile (for the example where the signals of the dataset cannot
be assumed as normally distributed), the closest possible value to our requirement is
found and set as the confidence interval model parameter. The Gaussian classifier
used by this method is inspired by [24].

Unsupervised approach
In the unsupervised approach no dataset labels are needed. At first The prototypes are
computed from all the samples from the training dataset. For this technique to work
well, it is necessary for the anomalies to be sparsely represented in the training dataset.
After the computation of the prototypes, the features for all the training signals are
computed. A set percentage of the furthest laying signals from the prototype (norm of
the feature vector) is deemed anomalous. This can be done multiple times, depending
on the requirements for false positivity. After this the supervised approach is applied
to the newly labeled dataset.

3.2.3 Prediction mechanism

The prediction function intakes the signal and computes the selected distances to the
prototypes from which the feature vector is built. The feature vector is then evaluated
by the trained Gaussian classifier. - A Mahalanobis distance to the multivariate normal
distribution model parameter is computed. The Mahalanobis distance is then com-
pared to the trained confidence interval value. If the distance is greater than this
confidence interval, the signal is predicted as anomalous, in the other case it is deemed
non-anomalous. The equation for computing the Mahalanobis distance and doing the
prediction is in the equation (5).
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Figure 3.4. Feature space in which the classification is performed. The samples in the
picture come from the original training set from CIIRC Testbed lab.

(𝑓 − 𝜈)Σ−1(𝑓 − 𝜈)𝑇 (5)

where 𝑓 is the row feature vector of the studied signal, 𝜈 is the mean row feature vector
of the multivariate normal distribution model parameter, Σ−1 is the inverse of the
covariance matrix of the multivariate normal distribution model parameter and (.)𝑇 is
the operation of transposition.

3.2.4 Application on data streams

Training
A naive solution based on our offline approach for training the classifier to work on data
streams would be to compute the multivariate normal distribution model parameters
for signals of all lengths up to the whole signal. To prevent this time and memory
highly demanding computation a mean error signal for all features is computed.
The process of training the detector to work on the data streams is explained in the
following article.

Given a set of training data of whole signals, the prototypes are computed as ex-
plained in 3.2.2. For each signal from a successfully executed process (or from a process
deemed successful by detectors trained with an unsupervised approach), an error is
calculated at each timestamp for each feature. These values are combined across all
timestamps to form a vector, which we call the error signal. An error signal is a
distance to the “shortened” prototype for example if a time series of l timestamps is
given, it is compared to the part of prototype of the length l. Even though this op-
eration is also time demanding, it is not even near the complexity of computing the
mean and covariance matrix for each timestamp. The result of this operation can be
seen in figure 3.5. These error signals are then scaled between the values 0 and 1 (so
that the error can be expressed as a percentage of the error of the whole signal) and
stored. Because of the time complexity of this solution, we use randomly selected 𝑛
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Figure 3.5. Feature error signals training data and computed mean

non-anomalous samples from the training dataset. This is beneficial when dealing with
datasets containing hundreds or greater number of signals.

Prediction mechanism
When evaluating the data stream time series, distances to parts of prototypes of the
same length are computed and put into a feature vector. These distances are scaled
by the inverse value of the error percentage and the result is evaluated by the feature
classifier of the whole signals. This outputs real time evaluation of the signal. A
definitive evaluation is not implemented, but it can be built easily based on this solution.
For instance when evaluating real signal in production on a data stream, the whole
process can be deemed anonymous, when the signal is evaluated as anonymous for n
consecutive times and then the process may be interrupted.

3.2.5 Continual learning

In this model the continual learning updates either the prototypes, the classifier pa-
rameters or both, although from experience, it is better not to update the prototypes.
Because in the case of DTW barycenter, if the signals are not computed from the whole
training set, but rather only as a weighted barycenter the method tends to quantize
the outcome resulting in different shape of the signal and thus greater DTW distance.
This is not the problem with mean euclidean signal because weighted average in each
timestamp can be adjusted constantly.
In the case of updating the classifier parameters, this can be more beneficial. When the
model is adaptable (unfrozen), the feature vectors of signals to be predicted are saved in
memory. This is acceptable even on edge devices, as one feature vectors consists in our
case of two floats in comparison to saving one signal, which is in our case approximately
6000 floats. The outcome (label) of the predictor is also saved and model can update
its parameters according to the number of predictions.
This can be extremely effective when using human-supervised continual learning ap-
proach described in the following subsection. If the feature vectors are saved in the
memory, the classifier can also be retrained to satisfy a different criterion.
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3.2.6 Expert classification - human in the loop
Although this method is designed to be able to operate independently, human help
can be beneficial especially in the training stage. The training can be extended by
doing human-supervised continual learning. This is done by executing the process with
adaptable (unfrozen) model, evaluating the physical outcome and reporting the labeled
results back to the model. The parameters of the model are updated not based on the
prediction of the model, as with continual learning but rather based on the label given
by the human. Human intervention can also be beneficial when the sample is near the
anomaly threshold and the risk of inaccurate prediction could be higher.
Another way of using expert knowledge for this model is if the data can be divided into
separable clusters. Even though this phenomenon does not exist within the dataset
used in this thesis, it could be beneficial for applications like quality measurement
score which is often used in the industry. If there are multiple classes of separation,
prototypes and distribution of features is computed for each cluster. The clustering
can be trained from labeled dataset, or by clustering algorithms. In this thesis k-means
clustering algorithm was used for semi-supervised division into k clusters 1.

k-Means clustering
k-Means clustering is an algorithm that has been proposed by [25]. It is one of the
most if not the most used clustering algorithms. The algorithm itself has several ways
in which it can be performed. The form described below comes from the original paper
[25]. The algorithm starts with randomly selecting k points. Then iteratively a new
point is added to each group and the mean of each group is adjusted. This process is
repeated until convergence.
When not dealing with large datasets, the approach of selecting the means first and
iteratively comparing all points to each mean can be more usable. This approach is
also used in algorithm in this thesis. The process iteratively continues by labeling the
points to each new mean and is stopped, when convergence is reached. The most used
metric for k-Means clustering algorithm is norm based distance (usually L2 norm),
but in theory any metric can be used. As an example, dynamic time warping is often
used [19, 11]. When dealing with time series, other variations of the algorithm such
as k-medioids clustering (the mean is not really a mean, but rather prototype, which
minimises selected distance to samples from the same cluster [26]).

1 The word semi-supervised is used because the k-means clustering is an unsupervised algorithm, but
our models are not capable of figuring out the ideal number k of clusters. This has to be inputted as a
parameter beforehand.
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Chapter 4
Deep learning approach

Another approach to classification can be utilising artificial neural networks (ANN).
When working with time series a number of architectures can be used. Among those
one can name recurrent neural networks (RNN), long-short term memory neural
networks (LSTM), transformer architecture or convolutional neural networks (CNN).
The greatest disadvantage of using neural network for any classification task is that
for satisfactory results a great amount of data is needed (when using conventional
approach this data also needs to be labeled). When training a neural network for
anomaly detection task this problem becomes even worse, because of the (usual) lack
of anomalies in the training data. The upside of using neural network is, that with the
right training it can be learned to solve very complex tasks. Within the dataset used
in this thesis, there are several samples, that even though are labeled as anomalies by
ground truth, are not detectable by proposed statistical methods, because of the fact,
that the distance of the signal is not far from the prototype. Nevertheless, the signal
is anomalous for a reason and its invalidity should be detectable. In this chapter the
goal is to design an ANN, which is able to accurately detect these subtleties.

4.1 Anomaly detection using ANN with LSTM core

The deep learning based method we selected for doing such task is a LSTM neural
network connected to multilayer perceptron. The LSTM core learns the normal course
of a signal and the perceptron decides based on the outcome if the signal is anomalous
or not. This classifier-like architecture was selected, because the plan was to develop
a method, which could not only classify the anomaly, but also its type. Unfortunately
this functionality was not achieved maybe because of the lack of training data in this
thesis, however in the future we may try to solve this problem 1.

4.1.1 Multilayer perceptron

Multilayer perceptron (MLP) is a type of ANN which is based on the unit called a
“perceptron”. In [27], a perceptron is described as a unit which outputs a linear combi-
nation of the inputs and returns 1 or -1 if the result is greater than certain value. The
perceptron however can use any non-linear activation function on its output [28].

1 The plans are discussed more in depth in section 6.1.
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4.1.2 Long-short term memory
LSTM is an type of neural network, built upon the ideas of RNN, which attempts to
solve the vanishing-exploding gradient problem (VEGP). This is a problem often en-
countered when training RNN, because the weight of the feedback part of the RNN
multiplies the output of the previous elements of the input and thus the value is either
very big (exploding gradient problem) or nearly zero (vanishing gradient problem). Be-
cause of this fact simple RNNs are very hard to train (the longer the input sequence
the harder), since when using backpropagation when training the neural network, the
gradient is either too big or too small, hence the training step is either too short or too
long thus it is hard for the optimization method to find the local minimum [29].

These networks tend to outperform RNNs, but the solution of VEGP is still not
perfect [30]. However, in most applications it allows the network to “remember” context
accurately (particular when dealing with shorter input sequences) and reduce the risk of
catastrophic forgetting. Introduced in 1997 by [31] it is still used in many deep learning
applications, particularly in time series analysis, even though in recent years it is being
substituted by the transformer architecture. The principle of the LSTM memory block
can be seen in figure 4.1.

Figure 4.1. Schema of the LSTM core block

Sigmoid activation function

𝜎(𝑦) = 1
1 + 𝑒−𝑦 [27] (1)

The domain of the sigmoid function is [−∞, ∞]
The range of the sigmoid function is [0, 1]
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Hyperbolic tangent activation function

tanh = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 [32] (2)

The domain of the hyperbolic tangent function is [−∞, ∞]
The range of the hyperbolic tangent function is [−1, 1]

The “C” stream is called the cell state and represents the long term memory of the
network. The “h” stream is called the hidden state and represents the current outcome
and the short term memory of the network. The “X” stream is the incoming signal.
The LSTM network can be decomposed on three subsections called gates. The first
gate named the forget gate, which through sigmoid nonlinearity connects the sum of
the short term memory, decides the amount of long term memory that is prevailed. The
sigmoid activation function’s range is a number between zero and one and its outcome
is multiplied with the value of the cell state, the input and forget gate bias directly with
the long term memory, which allows to reduce the influence of the long term memory
(cell state) - hence named the forget gate. The second gate is named the input gate,
and it combines the input transformed by sigmoid and hyperbolic tangent nonlinearity.
This is then added to the long term memory of the network. The last part of the
LSTM NN is the output gate. The output gate combines the output of the short term
memory transformed by the sigmoid function and long term memory transformed by
the hyperbolic tangent activation function.

4.1.3 Architecture
When designing the network, the idea was not only to detect anomalies, but also classify
the anomalies by type. That is why the architecture of this network is similar to one
used in classification. As mentioned above, the network consists of the two parts. The
first part is the LSTM NN, which has three hyperparameters which can be modified.
The dimensionality of the inputs (in the case of used dataset 6), dimensionality of the
vector of the hidden state and number of LSTM layers. The output of the network in
this case is the hidden state. After all of the signal goes through the LSTM part of the
network, the last hidden state of the network serves as an input to the second part of
the network - the MLP. The hyperparameters of the perceptron (activation function,
number of hidden layers, ...) can be tuned as well. The dimensionality of the output of
the MLP part can be also modified. Between each hidden layer of the MLP there is a
sigmoid nonlinearity. The schema can be seen in the figure 4.2.

If the outcome is put through a softmax function, the result is the deemed probability
of prediction for the model. The argument of maximum of the output vector is the
resulting evaluation of the signal.

4.1.4 Training process
The implementation of this neural network was done using python’s pytorch and
pytorch_lightning library. This method does not use the time series in the whole
length, only a partial signal of the assembly process. The input time series which is
therefore classified is a matrix of shape 150 × 6, where the first dimension is the value
in time and second dimension is the data coming from the other sensors. After the
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Figure 4.2. The principle of the architecture of the LSTM-MLP neural network

preparation of the data, the neural network is trained by the standard backpropagation
algorithm. The training process uses the ADAM optimizer ([33]).

There are two possible loss functions which are used in our model. The first one
is the cross entropy loss (CE) and the second one is the weighted cross entropy loss
(referred later in this thesis as WL). The usage of the weighted cross entropy loss has
its advantages and disadvantages. The main problem that this technique is supposed
to solve is the unbalanced number of different classes within the dataset. The weighted
cross entropy loss lets the model to train itself in a way that the loss is multiplied
by different coefficient for different classes. This approach is particularly useful in our
case, since anomaly detection is specific with not having many anomalous samples to
train on. Among the drawbacks of this method is that the successful training of the
model may be more difficult, and require even larger dataset. The weights of the loss
are computed from the training set through the formula (3).

𝐖 = 𝐰
∑𝑛

𝑖=1 𝐰𝑖 ⋅ min( 𝐰
∑𝑛

𝑖=1 𝐰𝑖
)

(3)

Where 𝐰 is the vector of occurrence of the classes in the dataset, 𝑛 is the dimensionality
of 𝐰 - number of classes and 𝐖 is the resulting vector of the weights.

For training an implementation of backpropagation algorithm in pytorch is used.
During the training of the model, the best achieved state of the weights (with minimal
loss) is always saved.

4.1.5 Prediction mechanism
This method’s prediction process is really straightforward. First, it is ensured that the
weights of the NN are freezed. The signal in the form of numpy array is then converted
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to pytorch tensor class, The same preparation step as with the signals of the training
set is done (extracting the signal of length 150) and the result is fed to the forward pass
of the neural network. As mentioned, the outcome can be either binary (True/False)
when using the argument of maximum on the outcome of the NN, or in probabilistic
confidence when using the softmax function. The use case of this feature could be to
monitor the values of confidence, and if the model outputs a value of confidence in
the prediction lower than certain threshold another method of evaluation (e.g. another
system, human operator) is used for confirming the prediction.
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Chapter 5
Experiments

For consistent and reliable evaluation of presented methods a standardized system of
testing was developed. The quality of anomaly detectors is often evaluated by the
same metrics used as when evaluating classifier performance. However, the metrics
hold different levels of importance. The anomaly detectors proposed in this thesis are
evaluated in a way common in literature. In the first section of this chapter, we discuss
the evaluation of offline methods, which detect anomalies across the entire signals. The
second section then examines data stream-driven methods that are capable of operating
on partial signals. The supervised and unsupervised approaches are compared to one
another. For getting the most accurate performance metrics of the classification, k-fold
crossvalidation (CV) is used. The folds in this case are used in two ways.

Shuffled crossvalidation
In the first case the dataset is randomly split into training and testing set k times in
a way that each signal is used exactly once in the testing set. This technique is the
conventional way of doing the k-fold CV. The testing window set size should always
be the same and since our evaluation dataset consists of 392 samples, the size of the
window was chosen to be 56. This number is ideal, because it is a divisor of the
number of samples, so the windows can be the same size for all the folds. Furthermore,
in literature the ratio of test samples is usually 10 or 20% of the whole dataset so
approximately 14.2% is an appropriate value. In literature this is called random k-fold
CV, we will call this shuffled CV.

Day-based block crossvalidation
The second way of CV used is day-based block CV where the dataset is divided by day
in which the measurement took place. In every fold data from one day is used as testing
set, and the detector is trained on the rest of the dataset. Although this may result in
a lower performance estimate of the classifiers in comparison (depending on the nature
of the dataset) to the classic random approach, it may be beneficial to measure its
performance in this way because it is less optimistically biased and better simulates the
real deployment of the model. When the model is put into production for an industrial
application, the measurement of the data for training the model is often expensive since
this usually means, that the robot on which the model runs cannot perform its task in
a usual way, so usually the model is tuned on data from as few days as possible.

The unsupervised methods were tested on the same dataset as the supervised and
the known labels were used just for evaluation the performance of the methods.

Inverse crossvalidation
To examine the influence of the training dataset size, an additional non-conventional
way of testing the models was introduced which we called inverse crossvalidation.
To simulate the smaller training dataset, the training and testing sets were interchanged.
The classical k-fold CV is done to estimate the performance of the model trained on the
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whole dataset. The inverse crossvalidation probably cannot be used in this way,
because the testing datasets contain the same data in multiple folds. Nevertheless, the
training is still done in a way that the training and testing sets are strictly disjunct.

In summary cross-validation was conducted in four distinct methods for the receiver
operating characteristic (ROC) analysis (section 5.1.1) and in two methods for other
measurment in section 5.1.2. These are day-based CV, day-based “inverse” CV, 7-fold
CV and “inverse” 7-fold CV for ROC experiments. For the accuracy part the “inverse
CV” was not used because the training of the neural networks would not make sense
with such a small dataset.

5.1 Performance metrics
When evaluating classifier the most basic and the most important metrics are the
true positive ratio (TPR) and false positive ratio (FPR). These are derived from the
number of correctly and incorrectly detected positive samples, correctly and incorrectly
classified negative samples. To better understand these terms a confusion matrix
is used. It can be seen in the figure 5.1. The rows of the matrix corresponds to the
output of the classifier/detector and the columns corresponds to the ground truth of
the measurement. The equations (1)-(6) are the formulas to compute false alarm ratio
(false positive ratio), sensitivity (recall, true positive ratio), specificity, accuracy and
f-measure respectively.

Positive Negative

True True positive False positive

False False negative True negative

Ground Truth

C
la

ss
ifi

er
 la
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l

Figure 5.1. Confusion matrix

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇 𝑁

(1)

TNR = 𝑇 𝑁
𝐹𝑃 + 𝑇 𝑁

(2)

Sensitivity = Recall = TPR = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

(3)

Specificity = 𝑇 𝑁
𝐹𝑃 + 𝑇 𝑁

(4)

Accuracy = 𝑇 𝑃 + 𝑇 𝑁
𝑃 + 𝑁

(5)
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𝑓𝛽 = (1 + 𝛽2) ⋅ 𝑇 𝑃
(1 + 𝛽2) ⋅ 𝑇 𝑃 + 𝛽2 ⋅ 𝐹𝑁 + 𝐹𝑃

(6)

Where 𝑇 𝑃 is the number of true positives, 𝑇 𝑁 is the number of true negatives, 𝐹𝑃
is the number of false positives and 𝐹𝑁 is the number of false negatives. These can be
seen in the confusion matrix. The 𝑃 is the number of positives in general (𝑇 𝑃 + 𝐹𝑁)
and 𝑁 is the number of negatives in general (𝑇 𝑁 + 𝐹𝑃). The 𝛽 in the f-measure is
the parameter of importance between precision and recall. when using the 𝑓𝛽 measure,
the recall is 𝛽 times more important than precision. The equations were adopted from
[34–35]

5.1.1 Receiver operating characteristic and AUC

Receiver operating characteristic curve
The receiver operating characteristic curve is one of the most widespread tests for
evaluating classifiers. [34]. It puts into a context a True positive rate and false alarm
rate. The ROC curve is a 2D graphical representation of these two measures. On
the x axis of the chart lies the false positive rate, whereas on the y axis lies the true
positive rate. The ROC curve is constructed by tuning the parameters of the model
and measuring these two rates. These directly measured points from the dataset are
known as accuracy points. These are then usually linearly interpolated for nice visual
representation, but the true value in between the two accuracy points is uncertain,
however it is known that it lies within the rectangular area which sides are parallel to
the axes and is defined by two accuracy points in its diagonally opposing corners. This
can be seen in the figure 5.2. The described linear interpolation corresponds to the
“expected” line in this figure.

Figure 5.2. The unknown values of the ROC curve and the bounding rectangle. The most
optimistic and most pessimistic outcome of real values of the ROC curve are the edges of
this rectangle. The line marked as expected is the linear interpolation between the two
accuracy points which was used in generating the ROC curves in this thesis. This image

was adopted from [34].

Area under curve
The often used measure related to the ROC curve is the area under curve (AUC). It
stands for the area under the ROC curve. The measurement of this can be done in
several ways, and in our case trapezoidal numerical integration of the curve was used.
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Usage and problems
All the ROC curves and AUC values in the chapter 5 are measured on the testing
dataset which is a disjunct set to the training (the model has never seen the testing
signals during training). Its distribution might be different from the distribution of the
training dataset, upon which the models are learned. That is why the model may not
be able to achieve all outcomes of the ROC curve by self-tuning. The ROC curve is
just a representation of all the possible decision based on the tunable threshold, but
the achievability by self-tuning is not guaranteed. This is especially apparent with
unsupervised models, for which the estimation of the percentage of anomalies is crucial
for working properly. The ROC curves were generated in two ways. In the first way
directly by setting the specific parameter (aggregated anomaly threshold for n-𝜎 method
and confidence interval for distance based feature method) to a spectrum of values and
measuring the outcome on the testing set. The other way was to make the detector tune
to multiple exact values of TPR. In each fold the classifier was trained with a criterion
of TPR of the multiplies of ten in percentage between zero and one. In the ROC curves
generated by testing the unsupervised models by self-tuning the TPR parameter, the
curve was unfortunately not an increasing function. This was especially apparent when
trained during the day-based block CV. Some interesting cases of the curves generated
by autotuning the parameter were therefore plotted in the form of a scatter chart. Each
color in those scattered ROC curves plots represents one fold of the CV. The figures
5.5 - 5.4 show the ROC curves of offline 3-𝜎 method. The unsupervised ROC curves
were generated with a success ratio (estimation of the non-anomalous ratio) of 0.9.

5.1.2 Accuracy performance evaluation

In the figures 5.11 and 5.12 there is a result of the accuracy, true positive rate and
true negative rate testing of the offline methods by the shuffled 7-fold crossvalidation
and the day-based block crossvalidation. The unsupervised methods were tested on
two different success ratios (estimated number of anomalies within the training set) -
these being 64% and 90% and the optimization criterion for all was maximum accuracy
(ACC). In anomaly detection tasks, the rate of catching the anomalies is often more
important than the pure accuracy, therefore the models were also tested when trained
with optimisation on the different reasonable values of skewed accuracy for statistical
methods or weighted loss for the deep learning based methods. These were (ACC -
general accuracy, sACC - smart skewed accuracy, 2sACC - skewed accuracy with skew
parameter of 2 (the classification of the positive samples is twice as important as the
negative samples), WL - weighted loss, 2WL - weighted loss where the classification of
the positive samples is twice as important as the negative samples). The supervised
methods were optimised for criterions in the parentheses in the figures 5.11, 5.12 for
offline methods and in the figures 5.16 and 5.17 for methods operating on data streams.
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Figure 5.3. Supervised 3-𝜎 detector ROC curves generated by day-based block CV. The
green curves are the ROCs of each fold. The blue curve is the mean of these ROC curves.
The curves are the result of evaluating based on all possible parameters of the threshold,
the scattered charts in the bottom are the result of autotuning the model to a certain TPR
value. The charts in the left figures are result of classical day-based block crossvalidation,

the right figures are result of “inverse” day-based block CV.
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Figure 5.4. Supervised 3-𝜎 detector ROC curves resulting from shuffled CV. The green
curves are the ROCs of each fold. The blue curve is the mean of these ROC curves. The
curves are the result of evaluating based on all possible parameters of the threshold, the
scattered charts in the bottom are the result of autotuning the model to a certain TPR
value. The charts in the left figures are result of shuffled 7-fold CV, the right subfigures

are result of 7-fold inverse CV.
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Figure 5.5. Unsupervised 3-𝜎 detector ROC curves generated by day-based block CV. The
green curves are the ROCs of each fold. The blue curve is the mean of these ROC curves.
The curves are the result of evaluating based on all possible parameters of the threshold,
the scattered charts in the bottom are the result of autotuning the model to a certain TPR
value. The charts in the left figures are result of classical day-based block crossvalidation,

the right figures are result of “inverse” day-based block CV.
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Figure 5.6. Unsupervised 3-𝜎 detector ROC curves resulting from shuffled CV. The green
curves are the ROCs of each fold. The blue curve is the mean of these ROC curves. The
curves are the result of evaluating based on all possible parameters of the threshold, the
scattered charts in the bottom are the result of autotuning the model to a certain TPR
value. The charts in the left figures are result of shuffled 7-fold CV, the right subfigures

are result of 7-fold inverse CV.
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Figure 5.7. Supervised feature detector ROC curves resulting from day-based block CV.
The green curves are the ROCs of each fold. The blue curve is the mean of these ROC
curves. The curves are the result of evaluating based on all possible parameters of the
threshold. The charts in the left figure is a result of classical day-based block CV, the right

figure is a result of “inverse” day-based block CV.
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Figure 5.8. Supervised feature detector ROC curves resulting from shuffled CV. The green
curves are the ROCs of each fold. The blue curve is the mean of these ROC curves. The
curves are the result of evaluating based on all possible parameters of the threshold. The
left subfigure is a result of shuffled 7-fold CV, the right subfigure is a result of 7-fold inverse

CV.
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Figure 5.9. Unsupervised feature detector ROC curves resulting from day-based block CV.
The green curves are the ROCs of each fold. The blue curve is the mean of these ROC
curves. The curves are the result of evaluating based on all possible parameters of the
threshold. The left subfigure is a result of classical day-based block crossvalidation, the

right figure is a result of “inverse” day-based block CV.
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Figure 5.10. Unsupervised feature detector ROC curves resulting from shuffled CV. The
green curves are the ROCs of each fold. The blue curve is the mean of these ROC curves.
The curves are the result of evaluating based on all possible parameters of the threshold.
The left subfigure is a result of shuffled 7-fold CV, the right subfigure is a result of 7-fold

inverse CV.
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Figure 5.11. Accuracy testing of selected offline methods. The tuning of each method
is in parentheses (ACC - general accuracy, sACC - smart skewed accuracy, 2sACC - the
classification of the positive samples is twice as important as the negative samples, WL
- weighted loss, 2WL - weighted loss where the classification of the positive samples is
twice as important as the negative samples). Accuracy, TPR and TNR are measured. The

results are computed on the sum of shuffled 7-fold CV.
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Figure 5.12. Accuracy testing of selected offline methods. The tuning of each method
is in parentheses (ACC - general accuracy, sACC - smart skewed accuracy, 2sACC - the
classification of the positive samples is twice as important as the negative samples, WL
- weighted loss, 2WL - weighted loss where the classification of the positive samples is
twice as important as the negative samples). Accuracy, TPR and TNR are measured. The

results are computed on the sum of day-based block CV.
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5.2 Online methods evaluation
The same two types of crossvalidation were used to test the methods - the shuffled 7-
fold crossvalidation and the day-based block crossvalidation. The models were trained
on a training set and the signals of the testing set were evaluated by the models. To
avoid evaluating signals too short, since the length of a full signal is around a thousand
timestamps, the shortest signal part was three hundred timestamps long. From each
signal in the testing dataset, ten “new” testing signals were made. The length of these
ten parts was evenly spaced from the three hundred up to the length of the whole full
signal. Since no labels for timestamps were available, the evaluation of classification
had to be done accordingly. The labels for the whole signals are available and on this,
we built our evaluation system.

5.2.1 Evaluating the outcome

Ground truth label (unknown)

0 200 400 600 800 1000
500

0
True negative FP True positive

Anomalous signal and prediction outcome (real)

0 200 400 600 800 1000
500

0
True negative True positive

Anomalous signal and prediction outcome (counted)

Predicted labels

Figure 5.13. Example of the assessment of the online detector, which accidentally de-
tects an anomaly when the signal was still normal (before the anomaly inception). The
“Ground truth label (unknown)” subplot represents the unknown ground truth label. The
subplot titled “Predicted labels” shows the sample prediction of the model. The “Anoma-
lous signal and prediction outcome (real)” subplot is the real evaluation of the prediction,
if the ground truth labels were available. The “Anomalous signal and prediction outcome
(counted)” subplot represents the prediction evaluation mechanism used in this thesis.

The assessment of the proposed data-stream-driven methods is not as simple as
with offline methods, since the labels for timestamps are not available in the dataset.
Therefore, there is no way to find out when exactly the anomaly happened in the
signal. The anomaly within a signal happens at a certain point and after that the
signal is anomalous, however before the moment of “anomaly inception” the signal
is normal. The online detection problem described above is not an issue if a non-
anomalous signal is being inspected. Such signal should be predicted as normal in
any particular moment of the process progress and the outcome of the test can either
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Figure 5.14. Example of the assessment of the online detector, which finds the positive
detection late, after the anomaly inception already happened. The “Ground truth la-
bel (unknown)” subplot represents the unknown ground truth label. The subplot titled
“Predicted labels” shows the sample prediction of the model. The “Anomalous signal and
prediction outcome (real)” subplot is the real evaluation of the prediction, if the ground
truth labels were available. The “Anomalous signal and prediction outcome (counted)”

subplot represents the prediction evaluation mechanism used in this thesis.

be true negative or false positive. Any positive detection appearance is clearly
false positive. With anomalous samples the evaluation is not as trivial. There was
no way of finding out with absolute certainty, when the “anomaly inception” began.
To overcome this lack of ground truth knowledge, we built the evaluation on basis of
consistency of the predictor’s decision. It is based on assumption that a signal that
was once classified as anomalous cannot become normal. To evaluate this the parts of
the signal inspected before the first positive detection were counted as true negative.
Similarly, the first sample that was labeled as anomalous was counted as true positive
and the ground truth of all samples coming after is considered positive.

This creates two inaccuracies in this system of measurement. False positive out-
come cannot be detected in anomalous signal, because it treats all positive outcomes as
true positives (visualized in figure 5.13). The second problem is that it cannot detect
the FN samples in anomalous signals if the anomaly is detected later than the “anomaly
inception”, because all signal parts until the first anomalous samples are counted as TN
(visualized in figure 5.14). True negatives after a false anomaly detections are also un-
detectable, since all the samples after the first detected anomaly are deemed positive
(visualized in figure 5.15) Furthermore, if all parts of a tested anomalous signal were
labeled as non-anomalous, the whole signal (10 samples) were subtracted from the TN
counter and were added to FN. This creates more inaccuracies, mainly the pessimistic
bias for TPR of the method because once again the dataset is not labeled on timestamp
basis.
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Figure 5.15. Example of the assessment of the online detector, when the predictions are
inconsistent. The “Ground truth label (unknown)” subplot represents the unknown ground
truth label. The subplot titled “Predicted labels” shows the sample prediction of the model.
The “Anomalous signal and prediction outcome (real)” subplot is the real evaluation of the
prediction, if the ground truth labels were available. The “Anomalous signal and prediction
outcome (counted)” subplot represents the prediction evaluation mechanism used in this

thesis.
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Figure 5.16. Accuracy testing of selected data-stream-driven methods. The tuning of each
method is in parentheses (ACC - general accuracy, 5sACC - the classification of the positive
samples is five times as important as the negative samples, smart tuning - training specific
to the data stream, without smart tuning - evaluation based on the length of the segment).
The number in parentheses for feature method is a temporal multiplication coefficient (an
equivalent to sACC for data-stream-driven feature method). Accuracy, TPR and TNR are

measured. The results are computed on the sum of shuffeled 7-fold CV.
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Figure 5.17. Accuracy testing of selected data-stream-driven methods. The tuning of each
method is in parentheses (ACC - general accuracy, 5sACC - the classification of the positive
samples is five times as important as the negative samples, smart tuning - training specific
to the data stream, without smart tuning - evaluation based on the length of the segment).
The number in parentheses for feature method is a temporal multiplication coefficient (an
equivalent to sACC for data-stream-driven feature method). Accuracy, TPR and TNR are

measured. The results are computed on the sum of day-based block CV.

45



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Analysis of the crossvalidation results, discussion
In this section, results listed in the figures 5.5-5.17 will be discussed. As in the chapters
before, at first we will examine the results of testing the offline methods, and then the
online methods.

5.3.1 Offline methods testing result analysis

Before we start comparing the proposed offline methods to one another, we should
compare all of the methods to the solution used before developing those methods. As
mentioned in chapter 2, the solution used prior to our efforts in the CIIRC Testbed for
industry 4.0 lab was CNN-based analysis of the pictures of the end product (assembled
wheels) taken by a camera within the robot’s operating space. The disadvantage of
this method is that for each sample a picture is taken from just a single angle, so the
detector can only detect the visual defects on one side of the tire. Furthermore, since
this method only relies on visual representation of the result of the process, it is unable
to detect the fault process based on the wrong stiffness of the tire or a defect on parts
not seen on such picture. Nevertheless, given all these limitations, this method still
achieves quite an impressive performance which can be seen in the figure 5.18. We
did not include its performance in the figures above, because it was measured in a
different way, than the crossvalidation based measurement in the figures 5.11 and 5.12.
As mentioned in chapter 2 this method was available to us in the way that we could
measure its outcome on the measured processes, but we had access to neither the
weights of the model, nor the training loop of this network. In addition, no information
about the training dataset was provided. The performance of the network was therefore
measured during the gathering data phase of this thesis. Unfortunately, we do not have
human-annotated data for all the measured data, but just for the last two days of the
measurement (14.03.2024, 18.04.2024). The network’s prediction to the outcome of
the process was noted and compared to the human annotated labels. Measuring the
performance directly resulted in the figure 5.18 (numeric values in appendix B in table
B.2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
True postive rate

True negative rate
Accuracy

Figure 5.18. Performance of the original CNN-based visual method, that was in use in the
Testbed for industry 4.0 lab in CIIRC

When comparing the result with the results of the presented methods, it can be
noted, that it reached the performance of the best methods evaluated by the day-based
block CV, but the estimation created by this type of crossvalidation is pessimistically
biased, and less representative for performance of the method trained on the whole
dataset. Therefore, we will look at the performance of the methods estimated by the
shuffled 7-fold CV. Regarding the accuracy it is slightly above average, and it holds a
really impressive TNR score. In fact when compared to the tested configurations of our
methods (figure 5.11), the TNR of the original method would be the third best when
directly compared with the results of the CV, but the TPR of the two methods which
have a higher TPR is much lower. Therefore, it is dependent on the priority whether
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a high TPR, TNR, or type of compromise is requested. From the general standpoint,
the best performing method is in our opinion the LSTM-based detector trained with a
weighted loss. The accuracy of this detector is the highest of all the methods tested, its
TNR is over 90% and its TPR is the second highest of all tested. LSTM-based method
came first with respect to accuracy also in day-based block CV testing (in this case
without weighted loss), which is surprising since the expectation was that with fewer
data, the neural network will perform worse.

It is no surprise, that the supervised methods outperformed the unsupervised ones,
but with right estimation of success ratio in unsupervised methods, the result is not
as big as one might expect. In the accuracy metric the best performing unsupervised
method is for both cases of crossvalidation the 3-𝜎 method with expected success ratio
of 90%. However, when we take a closer look on the results, it must be noted that this
is because of the considerable discrepancy in the number of successful and anomalous
processes within the used dataset, and it comes at a cost of low TPR. The same unsu-
pervised method of estimated success ratio of 64% scored a lower accuracy, on the other
hand both TPR and TNR have reasonable values. And in this lies the greatest strength
of those proposed methods. All of them can be self tuned to an ideal value based on the
desired criterion. In the case of figures 5.11 and 5.12, the criterions were accuracy and
skewed accuracy, and in the case of ROC curves the criterion was a minimal desired
TPR value. The methods will self-optimize based on those criterions, but if human
intervention is necessary, the more “low level” parameters such as decision thresholds
can also be changed directly.

Another surprising thing is that the LSTM methods with weighted loss outperformed
the LSTM without the usage of weighted loss. This can probably be explained by the
classifier-like architecture of the network, which allowed model to learn both of the
outcomes better and not predict all the samples as a non-anomalous signal. Other
possible explanation is that the learning rate used was too small, and the network
benefited from greater loss (and therefore greater training step) for the anomalous
class.

As was already discussed, it is not easy to rank the methods in general, because
the ranking depends on the requirements on the outcome (certain TPR, certain TNR,
certain accuracy...). In the terms of accuracy and “skewed accuracy”, it can be said
that the best method in general is the LSTM, but it is dependent on the size of the
dataset. The statistical methods show similar results, but out of the methods with the
specific tuning we tested, the 3-𝜎 method might perform slightly better.

From the ROC analysis we conclude that the 3-𝜎 method generally outperforms the
feature method on both CV types, and in both supervised and unsupervised way of the
training. This difference in performance is only marginal in the range of 0-5%. The
another interesting case from the ROC analysis is that the shuffled CV tends to have
worse mean AUC results than the day-based block CV, even though when we compare
the accuracy performance of these two CV measurements, the results are the other way.
This is probably because the way of the measuring the mean AUC. It was computed
as a real mean of AUCs of the curves generated from the folds. The TPR, TNR and
accuracy in was computed in figures 5.11, 5.12 and table B.2 were computed in a way
of summing the TP, TN, FP and FN from each measurement and therefore measuring
these across all folds, not from averaging the values from each fold. Since in this type
of CV the differences in the number of samples in each fold are great for the three days,
these two measurements will come out differently. This can be also seen when we take
a look at figure 5.5 (inverse crossvalidation subfigure), where one of the curves is in
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line with the dashed line. This is caused by the fact that the model was trained on the
small dataset (samples from 14.03.2024) of size 60 and tested on the rest of the dataset.

5.3.2 Data-stream-driven methods testing result analysis
Evaluation of the online methods is not as straightforward and is described in section
5.2.1. Given these facts, the values in figures 5.16 and 5.17, evaluate more the ability of
the classifier not to change the prediction during the evaluation of the same signal. The
pessimistic bias of the TPR has to also be acknowledged, since when the anomalous
signal is predicted as non-anomalous during all the stages of the testing process, all the
measurements are counted as FN. When evaluating the anomalous signal and anomaly
is spotted, the number of TP samples is usually less than the number of signal snippets
parts tested. Therefore, if for example the average anomaly is spotted on the fifth of
the ten total measurements, and in some cases it is never spotted, for each correctly
spotted anomalous signal, which has 5 TP samples, there is a signal that has 10 FN
samples. This way the TPR is pessimisticaly biased.

Also because of this type of measuring the data, a five times skewed accuracy was
used instead of twice skewed accuracy for offline methods, because the twice skewed
accuracy gave almost the same result as normal accuracy.

When we put the two tested methods toe to toe, there again is no clear winner. It
depends on the requirements of our model. For example interesting choice could be
a feature method tuned on accuracy with multiplier 1-1.2, because on both types of
examined CV this method holds impressive TNR, while keeping relatively high TPR
when compared to other tested methods. The 3-𝜎 method is not much worse though.

5.4 Experiments on the real process
On 20th of May 2024, the selected methods were evaluated in real time in the real
process. An interface for these methods created by Vojtěch Hanzlík [1] was used for
these measurements. It is important to measure the “real” performance of the methods
on real data and compare it to the estimations based on the performed crossvalidations.
The problem with the measurement from that day was once again the quality of the
tires. The tested tires are designed to be equipped on the rim only once. Thus, not
in the way we do it in the measurements, where every time the assembly is performed,
the tires are removed from the rims to do the assembly again. Unfortunately this time
we really did not have any spare undamaged tires, so the measurement was executed
with the ones we possessed.

Due to the high demand for equipment in the lab, we were only able to test a portion
of the methods. We aimed our efforts at testing the online methods. In total, 40 signals
were evaluated by all methods. The results were surprising and slightly inconsistent
with the results in the crossvalidations. The problem within this measurement was that
the robot was not calibrated in this particular day and the rate of failure was unusually
high when compared to the previous measurements. It reached 42.5% even without
using the artificial anomalies. The damage to tires probably also played a significant
role, which may have gone undetected in some cases, so the real fail rate may have been
even higher.

The best performing method we developed based on the measurements from this day
is the 3-𝜎 method, which reached the exactly same performance in all three metrics as
the visual CNN-based method, even though it failed on different samples. The biggest
surprise of this measurement was the underperformance of the LSTM-based method,
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Figure 5.19. Comparison of performance of different methods on the same dataset in the
Testbed for industry 4.0 lab in CIIRC.

in comparison to the crossvalidation testing. The method was unable to detect a lot
of faults, however its true negative rate is the highest of all the methods. The worst
performing method was the feature method. The results can be seen in figure 5.19.
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Chapter 6
Conclusion

In this thesis, we developed three method architectures for detecting anomalies from
force-torque signals from the sensor on the end effector of the Delta robot to detect
anomalies in the assembly process. These methods, inspired by algorithms used for
anomaly detection, were used for this problem, but are universally applicable to other
time series classification/anomaly detection tasks. The capability of operating with
data streams and real-time online prediction were implemented for both of the developed
statistical methods. A great emphasis was given to comparing the methods with selected
tuning from all designed method architectures to one another in a standardized testing
process, which aimed to be as fair as possible. In the end we tested the performance
of the methods using the interface designed by Vojtěch Hanzlík in [1] on the real Delta
robot assembly process in the Testbed for industry 4.0 lab.

The result of this thorough testing process found that the methods reach and some-
times outperform the solution used before in the Testbed for industry 4.0 lab (CNN,
which makes predictions from the photos of the outcome). Furthermore, our methods
are capable of detecting anomalies undetectable by the previous solution.

6.1 Future work
In this thesis we evaluated only a few possibilities of approaching the problem. For
example the chapter 5 only contains experiments of the basic developed methods, but
the special capabilities of these methods is not tested for instance, the continual learn-
ing. We plan to publish an article based upon the solution from this and [1] thesis. In
this paper, the complete results of testing will be published. With the recommended
range of around thirty pages for the bachelor’s thesis these results would extend this
by another ten to twenty pages. Therefore, only the basic variants of the implemented
methods were tested.

The python library we developed as a part of this thesis needs a proper documen-
tation, so other parties can use it as well. We plan to make a GitHub pages with
the tutorials, explanation and of usage of the developed methods. Some parts of the
problems we solve within the methods could be implemented with faster, more efficient
algorithms. For example the search for optimal thresholds in statistical methods is done
nearly in brute force way, and could be done much more efficiently with basic search
algorithms. We plan to release the optimised version with the paper.

One of the directions of future work could be the solution based on classifier ensemble
methods. Combining the outcome of our methods and the outcome of the visual CNN-
based method could outperform both of these separate approaches.

During the work on this thesis, new articles about interesting methods usable for
our thesis were found. To point out an interesting example, the solution published in
[36] could very well substitute the DBA barycenter, or add another usable feature in
the feature method. Another addition is that LSTM-based method should be able to
operate on data streams, for example like in [37] and [38].
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We also want to develop an autoencoder NN, which based on the research seems to
produce good results. The deep learning based solutions, which seem to take over this
field from statistical methods should also be compared. For example trying to solve our
problem through fully convolutional or transformer neural network architecture. These
approaches were not developed, since our deep-learning efforts started later during
the semester, when we acquired a large enough dataset. This alone would be also an
interesting motive for an article.

As we can see the limits for possible improvements are sky-high, and we should
probably get back to work.
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Appendix A
List of abbreviations

ACC . Accuracy
AI . Artificial inteligence
ANN . Artificial Neural Network
Aruco . Augmented reality university of Cordoba
AUC . Area under curve
CE . Cross entropy loss
CIIRC . Czech institute of informatics, robotics and cybernetics
CNN . Convolutional neural network
CTU . Czech technical university in Prague
CV . Crossvalidation
DDTW . Dependent dynamic time warping
DTW . Dynamic time warping
e. g. . Exempli gratia
FN . False negative
FP . False positive
FPR . False positive rate
HITL . Human in the loop
LSTM . Long-short term memory
ML . Machine learning
MLP . Multilayer perceptron
NN . Neural network
OPC . Open platform communication
OPCua . Open platform communication unified architecture
ROC . Reciever operating characteristic
SVM . Support vector machine
TN . True negative
TNR . True negative rate
TP . True positive
TPR . True positive rate
TS . Time series
VEGP . Vanishing-exploding gradient problem
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Appendix B
Offline methods comparison

Method Classifier CV type Train set size min AUC max AUC mean AUC

3-𝜎 unsupervised shuffeled big 0.67613 0.91399 0.77638
3-𝜎 unsupervised shuffeled small 0.73780 0.79403 0.76124
3-𝜎 unsupervised days big 0.67470 0.92111 0.81875
3-𝜎 unsupervised days small 0.49391 0.85134 0.69075
3-𝜎 supervised shuffeled big 0.72541 0.83635 0.77836
3-𝜎 supervised shuffeled small 0.71119 0.75778 0.74025
3-𝜎 supervised days big 0.68642 0.95111 0.84022
3-𝜎 supervised days small 0.64596 0.85937 0.74737
feature unsupervised shuffeled big 0.56171 0.73740 0.63094
feature unsupervised shuffeled small 0.67716 0.74261 0.71507
feature unsupervised days big 0.58551 0.94000 0.78075
feature unsupervised days small 0.54472 0.78803 0.69783
feature supervised shuffeled big 0.57344 0.76585 0.67500
feature supervised shuffeled small 0.67278 0.73041 0.69197
feature supervised days big 0.64452 0.96000 0.81172
feature supervised days small 0.71429 0.83852 0.75582

Table B.1. ROC AUC analysis comparisson of the selected offline methods

56



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Method Classifier CV type TPR TNR mean ACC

3-𝜎 unsupervised (0.9) shuffeled 0.38318 0.98947 0.82398
3-𝜎 unsupervised (0.64) shuffeled 0.72897 0.74035 0.73724
3-𝜎 unsupervised (0.9) days 0.41905 0.93333 0.78333
3-𝜎 unsupervised (0.64) days 0.78095 0.52157 0.59722
3-𝜎 supervised (ACC) shuffeled 0.41121 0.98596 0.82908
3-𝜎 supervised (sACC) shuffeled 0.63551 0.88070 0.81378
3-𝜎 supervised (2sACC) shuffeled 0.71963 0.67018 0.68367
3-𝜎 supervised (ACC) days 0.47619 0.92549 0.79444
3-𝜎 supervised (sACC) days 0.68571 0.72549 0.71389
3-𝜎 supervised (2sACC) days 0.69524 0.68627 0.68889
feature unsupervised (0.9) shuffeled 0.52336 0.89474 0.79337
feature unsupervised (0.64) shuffeled 0.66355 0.79298 0.75765
feature unsupervised (0.9) days 0.45714 0.90980 0.77778
feature unsupervised (0.64) days 0.66667 0.76863 0.73889
feature supervised (ACC) shuffeled 0.49533 0.91228 0.79847
feature supervised (sACC) shuffeled 0.53271 0.86667 0.77551
feature supervised (2sACC) shuffeled 0.65421 0.70175 0.68878
feature supervised (ACC) days 0.57143 0.91373 0.81389
feature supervised (sACC) days 0.59048 0.85882 0.78056
feature supervised (2sACC) days 0.59048 0.76774 0.69615
LSTM supervised shuffeled 0.50467 0.94035 0.82143
LSTM supervised (WL) shuffeled 0.75701 0.90877 0.86735
LSTM supervised (2WL) shuffeled 0.77570 0.84211 0.82398
LSTM supervised days 0.56190 0.91765 0.81389
LSTM supervised (WL) days 0.54286 0.87059 0.77500
LSTM supervised (2WL) days 0.60748 0.81961 0.75691
Original* ? other** 0.57143 0.95348 0.82812

Table B.2. Comparisson of the accuracies of the offline methods based on different param-
eters and CV.

*“Original” refers to the CNN-based method of evaluating the process based on the picture
of the outcome.

**“Other” refers to the process of obtaining these values described in section 5.3.1.
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Appendix C
Online methods comparison

Method Setting CV type TPR TNR mean ACC

3-𝜎 ACC shuffeled 0.85181 0.51006 0.59184
3-𝜎 ACC (smart tuning) shuffeled 0.46886 0.94830 0.84031
3-𝜎 5sACC (smart tuning) shuffeled 0.80506 0.51127 0.58236
3-𝜎 ACC days 0.94279 0.17886 0.39472
3-𝜎 ACC (smart tuning) days 0.53433 0.78973 0.72361
3-𝜎 5sACC (smart tuning) days 0.80138 0.31901 0.45528
feature ACC shuffeled 0.42077 0.92879 0.81020
feature ACC (1.2) shuffeled 0.58515 0.81858 0.76403
feature ACC days 0.54361 0.79533 0.72639
feature ACC (1.5) days 0.93476 0.14563 0.38083

Table C.3. Comparisson of the accuracies of the selected online methods based on different
parameters and CV.
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